首页> 外文OA文献 >Carbon isotopes of dissolved inorganic carbon reflect utilization of different carbon sources by microbial communities in two limestone aquifer assemblages
【2h】

Carbon isotopes of dissolved inorganic carbon reflect utilization of different carbon sources by microbial communities in two limestone aquifer assemblages

机译:溶解无机碳的碳同位素反映了两个石灰岩含水层组合中微生物群落对不同碳源的利用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Isotopes of dissolved inorganic carbon (DIC) are used to indicate both transit times and biogeochemical evolution of groundwaters. These signals can be complicated in carbonate aquifers, as both abiotic (i.e. carbonate equilibria) and biotic factors influence δ13C and 14C of DIC. We applied a novel graphical method for tracking changes in δ13C and 14C of DIC in two distinct aquifer complexes identified in the Hainich Critical Zone Exploratory (CZE), a platform to study how water 20 transport links surface and shallow groundwaters in limestone and marlstone rocks in central Germany. For more quantitative estimates of contributions of different biotic and abiotic carbon sources to the DIC pool, we used the geochemical modelling program NETPATH, which accounts for changes in dissolved ions in addition to C isotopes. Although water residence times in the Hainich CZE aquifers based on hydrogeology are relatively short (years or less), DIC isotopes in the shallow, mostly anoxic, aquifer assemblage (HTU) were depleted in 14C compared to a deeper, oxic, aquifer 25 complex (HTL). Carbon isotopes and chemical changes in the deeper HTL wells could be explained by interaction of recharge waters equilibrated with post-bomb 14C sources with carbonates. However, oxygen depletion and δ13C and 14C values of DIC below those expected from the processes of carbonate equilibrium alone indicate dramatically different biogeochemical evolution of waters in the upper aquifer assemblage (HTU wells). Changes of 14C and 13C in the upper aquifer complexes result from a number of biotic and abiotic processes, including oxidation of 14C depleted OM derived 30 from recycled microbial carbon and sedimentary organic matter as well as water rock interactions. The microbial pathways inferred from DIC isotope shifts and changes in water chemistry in the HTU wells were supported by comparison with in situ microbial community structure based on 16S rRNA analyses.
机译:溶解的无机碳的同位素(DIC)用于指示地下水的迁移时间和生物地球化学演化。这些信号在碳酸盐含水层中可能会很复杂,因为非生物(即碳酸盐平衡)和生物因素都会影响DIC的δ13C和14C。我们应用了一种新颖的图形方法来追踪海尼希奇临界区勘探区(CZE)中确定的两个不同含水层复合物中DIC的δ13C和14C的变化,该平台是研究水20输送如何连接石灰岩和马林岩中地表水和浅层地下水的平台。德国中部。为了更定量地估算不同生物和非生物碳源对DIC库的贡献,我们使用了地球化学建模程序NETPATH,该程序可解释除了C同位素外的溶解离子的变化。尽管基于水文地质学的海尼希CZE含水层中的水停留时间相对较短(年或更少),但与更深的含氧水层25复合物相比,在14C中,浅层(多数为无氧含水层组合)(HTU)中的DIC同位素被耗尽( HTL)。在深层HTL井中,碳同位素和化学变化可以通过用炸弹后14C源平衡的补给水与碳酸盐的相互作用来解释。但是,单独的碳酸盐平衡过程所预期的氧耗以及DIC的δ13C和14C值低于单独的碳酸盐平衡过程,这表明上部含水层组合(HTU井)中水体的生物地球化学演化有显着差异。上部含水层复合物中14C和13C的变化是由许多生物和非生物过程引起的,包括氧化14C耗尽的OM,这些OM来自回收的微生物碳和沉积有机物以及水岩相互作用,衍生出30。通过与基于16S rRNA分析的原位微生物群落结构进行比较,支持了从DIC同位素变化和HTU井中水化学变化推断出的微生物途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号